Papers
Topics
Authors
Recent
2000 character limit reached

Multi-population Ensemble Genetic Programming via Cooperative Coevolution and Multi-view Learning for Classification

Published 16 Sep 2025 in cs.NE and cs.AI | (2509.19339v1)

Abstract: This paper introduces Multi-population Ensemble Genetic Programming (MEGP), a computational intelligence framework that integrates cooperative coevolution and the multiview learning paradigm to address classification challenges in high-dimensional and heterogeneous feature spaces. MEGP decomposes the input space into conditionally independent feature subsets, enabling multiple subpopulations to evolve in parallel while interacting through a dynamic ensemble-based fitness mechanism. Each individual encodes multiple genes whose outputs are aggregated via a differentiable softmax-based weighting layer, enhancing both model interpretability and adaptive decision fusion. A hybrid selection mechanism incorporating both isolated and ensemble-level fitness promotes inter-population cooperation while preserving intra-population diversity. This dual-level evolutionary dynamic facilitates structured search exploration and reduces premature convergence. Experimental evaluations across eight benchmark datasets demonstrate that MEGP consistently outperforms a baseline GP model in terms of convergence behavior and generalization performance. Comprehensive statistical analyses validate significant improvements in Log-Loss, Precision, Recall, F1 score, and AUC. MEGP also exhibits robust diversity retention and accelerated fitness gains throughout evolution, highlighting its effectiveness for scalable, ensemble-driven evolutionary learning. By unifying population-based optimization, multi-view representation learning, and cooperative coevolution, MEGP contributes a structurally adaptive and interpretable framework that advances emerging directions in evolutionary machine learning.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.