Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Pluralistic Off-policy Evaluation and Alignment (2509.19333v1)

Published 15 Sep 2025 in cs.CL and cs.AI

Abstract: Personalized preference alignment for LLMs with diverse human preferences requires evaluation and alignment methods that capture pluralism. Most existing preference alignment datasets are logged under policies that differ substantially from the evaluated LLMs, and existing off-policy estimators focus solely on overall utility while ignoring preference pluralism. Extending Off-Policy Evaluation (OPE) to pluralistic preference alignment, therefore, remains an open question. Thus, we propose the Pluralistic Off-Policy Evaluation (POPE), the first framework for offline pluralistic preference evaluation and alignment in LLMs. POPE includes a unified reward function that combines (1) a collaborative utility component derived from human preference signals (e.g., upvotes or relevance scores) and (2) a diversity component inspired by entropy-based coverage measures, together reflecting pluralistic alignment. Furthermore, to estimate this reward from logged interactions, we derive decomposable inverse propensity scoring (IPS) estimators that separately evaluate relevance and diversity. Theoretically, we prove that our decomposed IPS estimators establish a lower bound on their variance. With the off-policy evaluated value function, we can directly enable off-policy optimization to further enhance pluralistic alignment. Empirical results demonstrate that POPE efficiently enhances pluralistic response generation and maintains the models' general capabilities on downstream tasks

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: