Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 420 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

A Federated Fine-Tuning Paradigm of Foundation Models in Heterogenous Wireless Networks (2509.19306v1)

Published 5 Sep 2025 in eess.SP, cs.AI, cs.IT, cs.NI, and math.IT

Abstract: Edge intelligence has emerged as a promising strategy to deliver low-latency and ubiquitous services for mobile devices. Recent advances in fine-tuning mechanisms of foundation models have enabled edge intelligence by integrating low-rank adaptation (LoRA) with federated learning. However, in wireless networks, the device heterogeneity and resource constraints on edge devices pose great threats to the performance of federated fine-tuning. To tackle these issues, we propose to optimize federated fine-tuning in heterogenous wireless networks via online learning. First, the framework of switching-based federated fine-tuning in wireless networks is provided. The edge devices switches to LoRA modules dynamically for federated fine-tuning with base station to jointly mitigate the impact of device heterogeneity and transmission unreliability. Second, a tractable upper bound on the inference risk gap is derived based on theoretical analysis. To improve the generalization capability, we formulate a non-convex mixed-integer programming problem with long-term constraints, and decouple it into model switching, transmit power control, and bandwidth allocation subproblems. An online optimization algorithm is developed to solve the problems with polynomial computational complexity. Finally, the simulation results on the SST-2 and QNLI data sets demonstrate the performance gains in test accuracy and energy efficiency.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube