PPG-Distill: Efficient Photoplethysmography Signals Analysis via Foundation Model Distillation (2509.19215v1)
Abstract: Photoplethysmography (PPG) is widely used in wearable health monitoring, yet large PPG foundation models remain difficult to deploy on resource-limited devices. We present PPG-Distill, a knowledge distillation framework that transfers both global and local knowledge through prediction-, feature-, and patch-level distillation. PPG-Distill incorporates morphology distillation to preserve local waveform patterns and rhythm distillation to capture inter-patch temporal structures. On heart rate estimation and atrial fibrillation detection, PPG-Distill improves student performance by up to 21.8% while achieving 7X faster inference and reducing memory usage by 19X, enabling efficient PPG analysis on wearables
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.