Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Pathways of Thoughts: Multi-Directional Thinking for Long-form Personalized Question Answering (2509.19094v1)

Published 23 Sep 2025 in cs.CL, cs.AI, and cs.IR

Abstract: Personalization is essential for adapting question answering (QA) systems to user-specific information needs, thereby improving both accuracy and user satisfaction. However, personalized QA remains relatively underexplored due to challenges such as inferring preferences from long, noisy, and implicit contexts, and generating responses that are simultaneously correct, contextually appropriate, and aligned with user expectations and background knowledge. To address these challenges, we propose Pathways of Thoughts (PoT), an inference-stage method that applies to any LLM without requiring task-specific fine-tuning. The approach models the reasoning of an LLM as an iterative decision process, where the model dynamically selects among cognitive operations such as reasoning, revision, personalization, and clarification. This enables exploration of multiple reasoning trajectories, producing diverse candidate responses that capture different perspectives. PoT then aggregates and reweights these candidates according to inferred user preferences, yielding a final personalized response that benefits from the complementary strengths of diverse reasoning paths. Experiments on the LaMP-QA benchmark for personalized QA show that PoT consistently outperforms competitive baselines, achieving up to a 13.1% relative improvement. Human evaluation corroborates these results, with annotators preferring outputs from PoT in 66% of cases and reporting ties in only 15% of cases.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 13 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube