Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Code Driven Planning with Domain-Adaptive Critic (2509.19077v1)

Published 23 Sep 2025 in cs.AI

Abstract: LLMs have been widely adopted as task planners for AI agents in sequential decision-making problems, leveraging their extensive world knowledge. However, the gap between their general knowledge and environment-specific requirements often leads to inaccurate plans. To address this, existing approaches rely on frequent LLM queries to iteratively refine plans based on immediate environmental feedback, which incurs substantial query costs. However, this refinement is typically guided by short-term environmental feedback, limiting LLMs from developing plans aligned with long-term rewards. We propose Code Driven Planning with Domain-Adaptive Critic (CoPiC). Instead of relying on frequent queries, CoPiC employs LLMs to generate a diverse set of high-level planning programs, which iteratively produce and refine candidate plans. A trained domain-adaptive critic then evaluates these candidates and selects the one most aligned with long-term rewards for execution. Using high-level planning programs as planner and domain-adaptive critic as estimator, CoPiC improves planning while significantly reducing query costs. Results in ALFWorld, NetHack, and StarCraft II Unit Building show that CoPiC outperforms advanced LLM-based baselines, AdaPlanner and Reflexion, achieving an average (1) 23.33% improvement in success rate and (2) 91.27% reduction in query costs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube