Papers
Topics
Authors
Recent
2000 character limit reached

Investigating Test-Time Scaling with Reranking for Machine Translation (2509.19020v1)

Published 23 Sep 2025 in cs.CL

Abstract: Scaling model parameters has become the de facto strategy for improving NLP systems, but it comes with substantial computational costs. Test-Time Scaling (TTS) offers an alternative by allocating more computation at inference: generating multiple candidates and selecting the best. While effective in tasks such as mathematical reasoning, TTS has not been systematically explored for machine translation (MT). In this paper, we present the first systematic study of TTS for MT, investigating a simple but practical best-of-N framework on WMT24 benchmarks. Our experiments cover six high-resource and one low-resource language pairs, five model sizes (3B-72B), and various TTS compute budget (N up to 1024). Our results show that a) For high-resource languages, TTS generally improves translation quality according to multiple neural MT evaluation metrics, and our human evaluation confirms these gains; b) Augmenting smaller models with large $N$ can match or surpass larger models at $N{=}1$ with more compute cost; c) Under fixed compute budgets, larger models are typically more efficient, and TTS can degrade quality due to metric blind spots in low-resource cases.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.