Papers
Topics
Authors
Recent
2000 character limit reached

DTW-Align: Bridging the Modality Gap in End-to-End Speech Translation with Dynamic Time Warping Alignment

Published 23 Sep 2025 in cs.CL | (2509.18987v1)

Abstract: End-to-End Speech Translation (E2E-ST) is the task of translating source speech directly into target text bypassing the intermediate transcription step. The representation discrepancy between the speech and text modalities has motivated research on what is known as bridging the modality gap. State-of-the-art methods addressed this by aligning speech and text representations on the word or token level. Unfortunately, this requires an alignment tool that is not available for all languages. Although this issue has been addressed by aligning speech and text embeddings using nearest-neighbor similarity search, it does not lead to accurate alignments. In this work, we adapt Dynamic Time Warping (DTW) for aligning speech and text embeddings during training. Our experiments demonstrate the effectiveness of our method in bridging the modality gap in E2E-ST. Compared to previous work, our method produces more accurate alignments and achieves comparable E2E-ST results while being significantly faster. Furthermore, our method outperforms previous work in low resource settings on 5 out of 6 language directions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.