Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

One-shot Embroidery Customization via Contrastive LoRA Modulation (2509.18948v1)

Published 23 Sep 2025 in cs.GR and cs.CV

Abstract: Diffusion models have significantly advanced image manipulation techniques, and their ability to generate photorealistic images is beginning to transform retail workflows, particularly in presale visualization. Beyond artistic style transfer, the capability to perform fine-grained visual feature transfer is becoming increasingly important. Embroidery is a textile art form characterized by intricate interplay of diverse stitch patterns and material properties, which poses unique challenges for existing style transfer methods. To explore the customization for such fine-grained features, we propose a novel contrastive learning framework that disentangles fine-grained style and content features with a single reference image, building on the classic concept of image analogy. We first construct an image pair to define the target style, and then adopt a similarity metric based on the decoupled representations of pretrained diffusion models for style-content separation. Subsequently, we propose a two-stage contrastive LoRA modulation technique to capture fine-grained style features. In the first stage, we iteratively update the whole LoRA and the selected style blocks to initially separate style from content. In the second stage, we design a contrastive learning strategy to further decouple style and content through self-knowledge distillation. Finally, we build an inference pipeline to handle image or text inputs with only the style blocks. To evaluate our method on fine-grained style transfer, we build a benchmark for embroidery customization. Our approach surpasses prior methods on this task and further demonstrates strong generalization to three additional domains: artistic style transfer, sketch colorization, and appearance transfer.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.