RS3DBench: A Comprehensive Benchmark for 3D Spatial Perception in Remote Sensing (2509.18897v1)
Abstract: In this paper, we introduce a novel benchmark designed to propel the advancement of general-purpose, large-scale 3D vision models for remote sensing imagery. While several datasets have been proposed within the realm of remote sensing, many existing collections either lack comprehensive depth information or fail to establish precise alignment between depth data and remote sensing images. To address this deficiency, we present a visual Benchmark for 3D understanding of Remotely Sensed images, dubbed RS3DBench. This dataset encompasses 54,951 pairs of remote sensing images and pixel-level aligned depth maps, accompanied by corresponding textual descriptions, spanning a broad array of geographical contexts. It serves as a tool for training and assessing 3D visual perception models within remote sensing image spatial understanding tasks. Furthermore, we introduce a remotely sensed depth estimation model derived from stable diffusion, harnessing its multimodal fusion capabilities, thereby delivering state-of-the-art performance on our dataset. Our endeavor seeks to make a profound contribution to the evolution of 3D visual perception models and the advancement of geographic artificial intelligence within the remote sensing domain. The dataset, models and code will be accessed on the https://rs3dbench.github.io.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.