Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Group Relative Policy Optimization for Text-to-Speech with Large Language Models (2509.18798v1)

Published 23 Sep 2025 in eess.AS

Abstract: This paper proposes a GRPO-based approach to enhance the performance of LLM-based text-to-speech (TTS) models by deriving rewards from an off-the-shelf automatic speech recognition (ASR) model. Compared to previous reinforcement learning methods for LLM-based TTS, our method requires no dedicated model for reward computation or training. Moreover, we design a composite reward function that combines character error rate (CER) with negative log-likelihood (NLL) obtained from the ASR model, providing more informative and accurate reward signals. We apply GRPO fine-tuning to pre-trained LLM-based TTS models and evaluate their zero-shot TTS performance. Experimental results show that the proposed method substantially improves both the intelligibility and naturalness of synthesized speech. Ablation studies and further analyses confirm the effectiveness of integrating the two reward components.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.