An Extended Kalman Filter for Systems with Infinite-Dimensional Measurements (2509.18749v1)
Abstract: This article examines state estimation in discrete-time nonlinear stochastic systems with finite-dimensional states and infinite-dimensional measurements, motivated by real-world applications such as vision-based localization and tracking. We develop an extended Kalman filter (EKF) for real-time state estimation, with the measurement noise modeled as an infinite-dimensional random field. When applied to vision-based state estimation, the measurement Jacobians required to implement the EKF are shown to correspond to image gradients. This result provides a novel system-theoretic justification for the use of image gradients as features for vision-based state estimation, contrasting with their (often heuristic) introduction in many computer-vision pipelines. We demonstrate the practical utility of the EKF on a public real-world dataset involving the localization of an aerial drone using video from a downward-facing monocular camera. The EKF is shown to outperform VINS-MONO, an established visual-inertial odometry algorithm, in some cases achieving mean squared error reductions of up to an order of magnitude.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.