MECap-R1: Emotion-aware Policy with Reinforcement Learning for Multimodal Emotion Captioning (2509.18729v1)
Abstract: Speech Emotion Captioning (SEC) has emerged as a notable research direction. The inherent complexity of emotional content in human speech makes it challenging for traditional discrete classification methods to provide an adequate representation. Consequently, utilizing natural language to describe speech emotions presents a novel avenue for more effectively capturing and expressing affect. In this paper, we propose MECap-R1, a pioneering emotion-aware policy with reinforcement learning for multimodal emotion captioning. By employing Group Relative Policy Optimization with emotion-aware reward (Emo-GRPO), the framework precisely captures the emotion and semantic features, thereby addressing the shortcomings of rigid rules in handling the dynamic and flexible nature of captions. Experimental results on the EmotionTalk dataset demonstrate that MECap-R1 performs well in generating emotion descriptions and achieves substantial gains in both accuracy and diversity.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.