Papers
Topics
Authors
Recent
2000 character limit reached

Subspace Clustering of Subspaces: Unifying Canonical Correlation Analysis and Subspace Clustering

Published 23 Sep 2025 in cs.LG and eess.SP | (2509.18653v1)

Abstract: We introduce a novel framework for clustering a collection of tall matrices based on their column spaces, a problem we term Subspace Clustering of Subspaces (SCoS). Unlike traditional subspace clustering methods that assume vectorized data, our formulation directly models each data sample as a matrix and clusters them according to their underlying subspaces. We establish conceptual links to Subspace Clustering and Generalized Canonical Correlation Analysis (GCCA), and clarify key differences that arise in this more general setting. Our approach is based on a Block Term Decomposition (BTD) of a third-order tensor constructed from the input matrices, enabling joint estimation of cluster memberships and partially shared subspaces. We provide the first identifiability results for this formulation and propose scalable optimization algorithms tailored to large datasets. Experiments on real-world hyperspectral imaging datasets demonstrate that our method achieves superior clustering accuracy and robustness, especially under high noise and interference, compared to existing subspace clustering techniques. These results highlight the potential of the proposed framework in challenging high-dimensional applications where structure exists beyond individual data vectors.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.