Papers
Topics
Authors
Recent
2000 character limit reached

A Good Plan is Hard to Find: Aligning Models with Preferences is Misaligned with What Helps Users (2509.18632v1)

Published 23 Sep 2025 in cs.CL

Abstract: To assist users in complex tasks, LLMs generate plans: step-by-step instructions towards a goal. While alignment methods aim to ensure LLM plans are helpful, they train (RLHF) or evaluate (ChatbotArena) on what users prefer, assuming this reflects what helps them. We test this with Planorama: an interface where 126 users answer 300 multi-step questions with LLM plans. We get 4388 plan executions and 5584 comparisons to measure plan helpfulness (QA success) and user preferences on plans, and recreate the setup in agents and reward models to see if they simulate or prefer what helps users. We expose: 1) user/model preferences and agent success do not accurately predict which plans help users, so common alignment feedback can misalign with helpfulness; 2) this gap is not due to user-specific preferences, as users are similarly successful when using plans they prefer/disprefer; 3) surface-level cues like brevity and question similarity strongly link to preferences, but such biases fail to predict helpfulness. In all, we argue aligning helpful LLMs needs feedback from real user interactions, not just preferences of what looks helpful, so we discuss the plan NLP researchers can execute to solve this problem.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 12 tweets with 99 likes about this paper.