The Case for Negative Data: From Crash Reports to Counterfactuals for Reasonable Driving (2509.18626v1)
Abstract: Learning-based autonomous driving systems are trained mostly on incident-free data, offering little guidance near safety-performance boundaries. Real crash reports contain precisely the contrastive evidence needed, but they are hard to use: narratives are unstructured, third-person, and poorly grounded to sensor views. We address these challenges by normalizing crash narratives to ego-centric language and converting both logs and crashes into a unified scene-action representation suitable for retrieval. At decision time, our system adjudicates proposed actions by retrieving relevant precedents from this unified index; an agentic counterfactual extension proposes plausible alternatives, retrieves for each, and reasons across outcomes before deciding. On a nuScenes benchmark, precedent retrieval substantially improves calibration, with recall on contextually preferred actions rising from 24% to 53%. The counterfactual variant preserves these gains while sharpening decisions near risk.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.