Papers
Topics
Authors
Recent
2000 character limit reached

Prompt-Guided Dual Latent Steering for Inversion Problems (2509.18619v1)

Published 23 Sep 2025 in cs.CV

Abstract: Inverting corrupted images into the latent space of diffusion models is challenging. Current methods, which encode an image into a single latent vector, struggle to balance structural fidelity with semantic accuracy, leading to reconstructions with semantic drift, such as blurred details or incorrect attributes. To overcome this, we introduce Prompt-Guided Dual Latent Steering (PDLS), a novel, training-free framework built upon Rectified Flow models for their stable inversion paths. PDLS decomposes the inversion process into two complementary streams: a structural path to preserve source integrity and a semantic path guided by a prompt. We formulate this dual guidance as an optimal control problem and derive a closed-form solution via a Linear Quadratic Regulator (LQR). This controller dynamically steers the generative trajectory at each step, preventing semantic drift while ensuring the preservation of fine detail without costly, per-image optimization. Extensive experiments on FFHQ-1K and ImageNet-1K under various inversion tasks, including Gaussian deblurring, motion deblurring, super-resolution and freeform inpainting, demonstrate that PDLS produces reconstructions that are both more faithful to the original image and better aligned with the semantic information than single-latent baselines.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.