Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 171 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Enhanced Survival Trees (2509.18494v1)

Published 23 Sep 2025 in stat.ME and stat.ML

Abstract: We introduce a new survival tree method for censored failure time data that incorporates three key advancements over traditional approaches. First, we develop a more computationally efficient splitting procedure that effectively mitigates the end-cut preference problem, and we propose an intersected validation strategy to reduce the variable selection bias inherent in greedy searches. Second, we present a novel framework for determining tree structures through fused regularization. In combination with conventional pruning, this approach enables the merging of non-adjacent terminal nodes, producing more parsimonious and interpretable models. Third, we address inference by constructing valid confidence intervals for median survival times within the subgroups identified by the final tree. To achieve this, we apply bootstrap-based bias correction to standard errors. The proposed method is assessed through extensive simulation studies and illustrated with data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.

alphaXiv

  1. Enhanced Survival Trees (2 likes, 0 questions)