Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 416 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

End-Cut Preference in Survival Trees (2509.18477v1)

Published 22 Sep 2025 in stat.ML and cs.LG

Abstract: The end-cut preference (ECP) problem, referring to the tendency to favor split points near the boundaries of a feature's range, is a well-known issue in CART (Breiman et al., 1984). ECP may induce highly imbalanced and biased splits, obscure weak signals, and lead to tree structures that are both unstable and difficult to interpret. For survival trees, we show that ECP also arises when using greedy search to select the optimal cutoff point by maximizing the log-rank test statistic. To address this issue, we propose a smooth sigmoid surrogate (SSS) approach, in which the hard-threshold indicator function is replaced by a smooth sigmoid function. We further demonstrate, both theoretically and through numerical illustrations, that SSS provides an effective remedy for mitigating or avoiding ECP.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 7 likes.

alphaXiv

  1. End-Cut Preference in Survival Trees (4 likes, 0 questions)