Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Graph Enhanced Trajectory Anomaly Detection (2509.18386v1)

Published 22 Sep 2025 in cs.LG and cs.AI

Abstract: Trajectory anomaly detection is essential for identifying unusual and unexpected movement patterns in applications ranging from intelligent transportation systems to urban safety and fraud prevention. Existing methods only consider limited aspects of the trajectory nature and its movement space by treating trajectories as sequences of sampled locations, with sampling determined by positioning technology, e.g., GPS, or by high-level abstractions such as staypoints. Trajectories are analyzed in Euclidean space, neglecting the constraints and connectivity information of the underlying movement network, e.g., road or transit networks. The proposed Graph Enhanced Trajectory Anomaly Detection (GETAD) framework tightly integrates road network topology, segment semantics, and historical travel patterns to model trajectory data. GETAD uses a Graph Attention Network to learn road-aware embeddings that capture both physical attributes and transition behavior, and augments these with graph-based positional encodings that reflect the spatial layout of the road network. A Transformer-based decoder models sequential movement, while a multiobjective loss function combining autoregressive prediction and supervised link prediction ensures realistic and structurally coherent representations. To improve the robustness of anomaly detection, we introduce Confidence Weighted Negative Log Likelihood (CW NLL), an anomaly scoring function that emphasizes high-confidence deviations. Experiments on real-world and synthetic datasets demonstrate that GETAD achieves consistent improvements over existing methods, particularly in detecting subtle anomalies in road-constrained environments. These results highlight the benefits of incorporating graph structure and contextual semantics into trajectory modeling, enabling more precise and context-aware anomaly detection.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube