Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Statistical Insight into Meta-Learning via Predictor Subspace Characterization and Quantification of Task Diversity (2509.18349v1)

Published 22 Sep 2025 in stat.ML and cs.LG

Abstract: Meta-learning has emerged as a powerful paradigm for leveraging information across related tasks to improve predictive performance on new tasks. In this paper, we propose a statistical framework for analyzing meta-learning through the lens of predictor subspace characterization and quantification of task diversity. Specifically, we model the shared structure across tasks using a latent subspace and introduce a measure of diversity that captures heterogeneity across task-specific predictors. We provide both simulation-based and theoretical evidence indicating that achieving the desired prediction accuracy in meta-learning depends on the proportion of predictor variance aligned with the shared subspace, as well as on the accuracy of subspace estimation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 7 likes.