Statistical Insight into Meta-Learning via Predictor Subspace Characterization and Quantification of Task Diversity (2509.18349v1)
Abstract: Meta-learning has emerged as a powerful paradigm for leveraging information across related tasks to improve predictive performance on new tasks. In this paper, we propose a statistical framework for analyzing meta-learning through the lens of predictor subspace characterization and quantification of task diversity. Specifically, we model the shared structure across tasks using a latent subspace and introduce a measure of diversity that captures heterogeneity across task-specific predictors. We provide both simulation-based and theoretical evidence indicating that achieving the desired prediction accuracy in meta-learning depends on the proportion of predictor variance aligned with the shared subspace, as well as on the accuracy of subspace estimation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.