Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

RadarSFD: Single-Frame Diffusion with Pretrained Priors for Radar Point Clouds (2509.18068v1)

Published 22 Sep 2025 in cs.RO and eess.SP

Abstract: Millimeter-wave radar provides perception robust to fog, smoke, dust, and low light, making it attractive for size, weight, and power constrained robotic platforms. Current radar imaging methods, however, rely on synthetic aperture or multi-frame aggregation to improve resolution, which is impractical for small aerial, inspection, or wearable systems. We present RadarSFD, a conditional latent diffusion framework that reconstructs dense LiDAR-like point clouds from a single radar frame without motion or SAR. Our approach transfers geometric priors from a pretrained monocular depth estimator into the diffusion backbone, anchors them to radar inputs via channel-wise latent concatenation, and regularizes outputs with a dual-space objective combining latent and pixel-space losses. On the RadarHD benchmark, RadarSFD achieves 35 cm Chamfer Distance and 28 cm Modified Hausdorff Distance, improving over the single-frame RadarHD baseline (56 cm, 45 cm) and remaining competitive with multi-frame methods using 5-41 frames. Qualitative results show recovery of fine walls and narrow gaps, and experiments across new environments confirm strong generalization. Ablation studies highlight the importance of pretrained initialization, radar BEV conditioning, and the dual-space loss. Together, these results establish the first practical single-frame, no-SAR mmWave radar pipeline for dense point cloud perception in compact robotic systems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube