Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 46 tok/s Pro
Gemini 2.5 Flash 148 tok/s Pro
Kimi K2 170 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Deep Hierarchical Learning with Nested Subspace Networks (2509.17874v1)

Published 22 Sep 2025 in cs.LG

Abstract: Large neural networks are typically trained for a fixed computational budget, creating a rigid trade-off between performance and efficiency that is ill-suited for deployment in resource-constrained or dynamic environments. Existing approaches to this problem present a difficult choice: training a discrete collection of specialist models is computationally prohibitive, while dynamic methods like slimmable networks often lack the flexibility to be applied to large, pre-trained foundation models. In this work, we propose Nested Subspace Networks (NSNs), a novel architectural paradigm that enables a single model to be dynamically and granularly adjusted across a continuous spectrum of compute budgets at inference time. The core of our approach is to re-parameterize linear layers to satisfy a nested subspace property, such that the function computed at a given rank is a strict subspace of the function at any higher rank. We show that this entire hierarchy of models can be optimized jointly via an uncertainty-aware objective that learns to balance the contributions of different ranks based on their intrinsic difficulty. We demonstrate empirically that NSNs can be surgically applied to pre-trained LLMs and unlock a smooth and predictable compute-performance frontier. For example, a single NSN-adapted model can achieve a 50% reduction in inference FLOPs with only a 5 percentage point loss in accuracy. Our findings establish NSNs as a powerful framework for creating the next generation of adaptive foundation models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.