Deep Hierarchical Learning with Nested Subspace Networks (2509.17874v1)
Abstract: Large neural networks are typically trained for a fixed computational budget, creating a rigid trade-off between performance and efficiency that is ill-suited for deployment in resource-constrained or dynamic environments. Existing approaches to this problem present a difficult choice: training a discrete collection of specialist models is computationally prohibitive, while dynamic methods like slimmable networks often lack the flexibility to be applied to large, pre-trained foundation models. In this work, we propose Nested Subspace Networks (NSNs), a novel architectural paradigm that enables a single model to be dynamically and granularly adjusted across a continuous spectrum of compute budgets at inference time. The core of our approach is to re-parameterize linear layers to satisfy a nested subspace property, such that the function computed at a given rank is a strict subspace of the function at any higher rank. We show that this entire hierarchy of models can be optimized jointly via an uncertainty-aware objective that learns to balance the contributions of different ranks based on their intrinsic difficulty. We demonstrate empirically that NSNs can be surgically applied to pre-trained LLMs and unlock a smooth and predictable compute-performance frontier. For example, a single NSN-adapted model can achieve a 50% reduction in inference FLOPs with only a 5 percentage point loss in accuracy. Our findings establish NSNs as a powerful framework for creating the next generation of adaptive foundation models.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.