Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 28 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Towards Adaptive Context Management for Intelligent Conversational Question Answering (2509.17829v1)

Published 22 Sep 2025 in cs.CL

Abstract: This particular paper introduces an Adaptive Context Management (ACM) framework for the Conversational Question Answering (ConvQA) systems. The key objective of the ACM framework is to optimize the use of the conversation history by dynamically managing context for maximizing the relevant information provided to a ConvQA model within its token limit. Our approach incorporates a Context Manager (CM) Module, a Summarization (SM) Module, and an Entity Extraction (EE) Module in a bid to handle the conversation history efficaciously. The CM Module dynamically adjusts the context size, thereby preserving the most relevant and recent information within a model's token limit. The SM Module summarizes the older parts of the conversation history via a sliding window. When the summarization window exceeds its limit, the EE Module identifies and retains key entities from the oldest conversation turns. Experimental results demonstrate the effectiveness of our envisaged framework in generating accurate and contextually appropriate responses, thereby highlighting the potential of the ACM framework to enhance the robustness and scalability of the ConvQA systems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.