Papers
Topics
Authors
Recent
2000 character limit reached

Incorporating the Refractory Period into Spiking Neural Networks through Spike-Triggered Threshold Dynamics (2509.17769v1)

Published 22 Sep 2025 in cs.CV

Abstract: As the third generation of neural networks, spiking neural networks (SNNs) have recently gained widespread attention for their biological plausibility, energy efficiency, and effectiveness in processing neuromorphic datasets. To better emulate biological neurons, various models such as Integrate-and-Fire (IF) and Leaky Integrate-and-Fire (LIF) have been widely adopted in SNNs. However, these neuron models overlook the refractory period, a fundamental characteristic of biological neurons. Research on excitable neurons reveal that after firing, neurons enter a refractory period during which they are temporarily unresponsive to subsequent stimuli. This mechanism is critical for preventing over-excitation and mitigating interference from aberrant signals. Therefore, we propose a simple yet effective method to incorporate the refractory period into spiking LIF neurons through spike-triggered threshold dynamics, termed RPLIF. Our method ensures that each spike accurately encodes neural information, effectively preventing neuron over-excitation under continuous inputs and interference from anomalous inputs. Incorporating the refractory period into LIF neurons is seamless and computationally efficient, enhancing robustness and efficiency while yielding better performance with negligible overhead. To the best of our knowledge, RPLIF achieves state-of-the-art performance on Cifar10-DVS(82.40%) and N-Caltech101(83.35%) with fewer timesteps and demonstrates superior performance on DVS128 Gesture(97.22%) at low latency.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.