Multi-Agent Amodal Completion: Direct Synthesis with Fine-Grained Semantic Guidance
Abstract: Amodal completion, generating invisible parts of occluded objects, is vital for applications like image editing and AR. Prior methods face challenges with data needs, generalization, or error accumulation in progressive pipelines. We propose a Collaborative Multi-Agent Reasoning Framework based on upfront collaborative reasoning to overcome these issues. Our framework uses multiple agents to collaboratively analyze occlusion relationships and determine necessary boundary expansion, yielding a precise mask for inpainting. Concurrently, an agent generates fine-grained textual descriptions, enabling Fine-Grained Semantic Guidance. This ensures accurate object synthesis and prevents the regeneration of occluders or other unwanted elements, especially within large inpainting areas. Furthermore, our method directly produces layered RGBA outputs guided by visible masks and attention maps from a Diffusion Transformer, eliminating extra segmentation. Extensive evaluations demonstrate our framework achieves state-of-the-art visual quality.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.