Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

GEM-T: Generative Tabular Data via Fitting Moments (2509.17752v1)

Published 22 Sep 2025 in cs.LG, cs.AI, and stat.ML

Abstract: Tabular data dominates data science but poses challenges for generative models, especially when the data is limited or sensitive. We present a novel approach to generating synthetic tabular data based on the principle of maximum entropy -- MaxEnt -- called GEM-T, for ``generative entropy maximization for tables.'' GEM-T directly captures nth-order interactions -- pairwise, third-order, etc. -- among columns of training data. In extensive testing, GEM-T matches or exceeds deep neural network approaches previously regarded as state-of-the-art in 23 of 34 publicly available datasets representing diverse subject domains (68\%). Notably, GEM-T involves orders-of-magnitude fewer trainable parameters, demonstrating that much of the information in real-world data resides in low-dimensional, potentially human-interpretable correlations, provided that the input data is appropriately transformed first. Furthermore, MaxEnt better handles heterogeneous data types (continuous vs. discrete vs. categorical), lack of local structure, and other features of tabular data. GEM-T represents a promising direction for light-weight high-performance generative models for structured data.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube