An LLM-based Agent Simulation Approach to Study Moral Evolution (2509.17703v1)
Abstract: The evolution of morality presents a puzzle: natural selection should favor self-interest, yet humans developed moral systems promoting altruism. We address this question by introducing a novel LLM-based agent simulation framework modeling prehistoric hunter-gatherer societies. This platform is designed to probe diverse questions in social evolution, from survival advantages to inter-group dynamics. To investigate moral evolution, we designed agents with varying moral dispositions based on the Expanding Circle Theory \citep{singer1981expanding}. We evaluated their evolutionary success across a series of simulations and analyzed their decision-making in specially designed moral dilemmas. These experiments reveal how an agent's moral framework, in combination with its cognitive constraints, directly shapes its behavior and determines its evolutionary outcome. Crucially, the emergent patterns echo seminal theories from related domains of social science, providing external validation for the simulations. This work establishes LLM-based simulation as a powerful new paradigm to complement traditional research in evolutionary biology and anthropology, opening new avenues for investigating the complexities of moral and social evolution.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.