Papers
Topics
Authors
Recent
2000 character limit reached

When TableQA Meets Noise: A Dual Denoising Framework for Complex Questions and Large-scale Tables (2509.17680v1)

Published 22 Sep 2025 in cs.CL

Abstract: Table question answering (TableQA) is a fundamental task in NLP. The strong reasoning capabilities of LLMs have brought significant advances in this field. However, as real-world applications involve increasingly complex questions and larger tables, substantial noisy data is introduced, which severely degrades reasoning performance. To address this challenge, we focus on improving two core capabilities: Relevance Filtering, which identifies and retains information truly relevant to reasoning, and Table Pruning, which reduces table size while preserving essential content. Based on these principles, we propose EnoTab, a dual denoising framework for complex questions and large-scale tables. Specifically, we first perform Evidence-based Question Denoising by decomposing the question into minimal semantic units and filtering out those irrelevant to answer reasoning based on consistency and usability criteria. Then, we propose Evidence Tree-guided Table Denoising, which constructs an explicit and transparent table pruning path to remove irrelevant data step by step. At each pruning step, we observe the intermediate state of the table and apply a post-order node rollback mechanism to handle abnormal table states, ultimately producing a highly reliable sub-table for final answer reasoning. Finally, extensive experiments show that EnoTab achieves outstanding performance on TableQA tasks with complex questions and large-scale tables, confirming its effectiveness.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.