Papers
Topics
Authors
Recent
2000 character limit reached

Mechanistic Interpretability with SAEs: Probing Religion, Violence, and Geography in Large Language Models (2509.17665v1)

Published 22 Sep 2025 in cs.LG, cs.AI, and cs.CY

Abstract: Despite growing research on bias in LLMs, most work has focused on gender and race, with little attention to religious identity. This paper explores how religion is internally represented in LLMs and how it intersects with concepts of violence and geography. Using mechanistic interpretability and Sparse Autoencoders (SAEs) via the Neuronpedia API, we analyze latent feature activations across five models. We measure overlap between religion- and violence-related prompts and probe semantic patterns in activation contexts. While all five religions show comparable internal cohesion, Islam is more frequently linked to features associated with violent language. In contrast, geographic associations largely reflect real-world religious demographics, revealing how models embed both factual distributions and cultural stereotypes. These findings highlight the value of structural analysis in auditing not just outputs but also internal representations that shape model behavior.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube