Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Whitening Spherical Gaussian Mixtures in the Large-Dimensional Regime (2509.17636v1)

Published 22 Sep 2025 in stat.ML and cs.LG

Abstract: Whitening is a classical technique in unsupervised learning that can facilitate estimation tasks by standardizing data. An important application is the estimation of latent variable models via the decomposition of tensors built from high-order moments. In particular, whitening orthogonalizes the means of a spherical Gaussian mixture model (GMM), thereby making the corresponding moment tensor orthogonally decomposable, hence easier to decompose. However, in the large-dimensional regime (LDR) where data are high-dimensional and scarce, the standard whitening matrix built from the sample covariance becomes ineffective because the latter is spectrally distorted. Consequently, whitened means of a spherical GMM are no longer orthogonal. Using random matrix theory, we derive exact limits for their dot products, which are generally nonzero in the LDR. As our main contribution, we then construct a corrected whitening matrix that restores asymptotic orthogonality, allowing for performance gains in spherical GMM estimation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: