Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Coordinated Battery Electric Vehicle Charging Scheduling across Multiple Charging Stations (2509.17607v1)

Published 22 Sep 2025 in eess.SY and cs.SY

Abstract: The uptake of battery electric vehicles (BEVs) is increasing to reduce greenhouse gas emissions in the transport sector. The rapid adoption of BEVs depends significantly on the coordinated charging/discharging infrastructure. Without it, uncontrolled and erratic charging patterns could lead to increased power losses and voltage fluctuations beyond acceptable thresholds. BEV charge scheduling presents a multi-objective optimization (MOO) challenge, demanding a balance between minimizing network impact and maximizing the benefits for electric vehicle charging station (EVCS) operators and BEV owners. In this paper, we develop an MOO framework incorporating a carbon emission program and a dynamic economic dispatch problem, allowing BEV users to respond by charging and discharging through grid-to-vehicle (G2V) and vehicle-to-grid (V2G) technologies according to the optimal electricity price and compensation. Furthermore, we integrate dynamic economic dispatch with time-of-use tariffs to obtain optimal market electricity prices and reduce total costs over 24 hours. Our experimental results on a sample network show that the proposed scheduling increases participation in V2G services by over 10%, increases EVCS benefits by over 20%, and reduces network losses. Furthermore, increased rates of charging/discharging, coupled with more significant carbon revenue benefits for BEV users and EVCS, contribute to better offsetting battery degradation costs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube