2000 character limit reached
Conjugate type properties of harmonic $(K,K')$-quasiregular mappings
Published 22 Sep 2025 in math.CV | (2509.17578v1)
Abstract: The main purpose of this paper is to investigate conjugate type properties for harmonic $(K,K')$-quasiregular mappings, where $K \geq 1$ and $K' \geq 0$ are constants. We first establish a Riesz type conjugate function theorem for such mappings, which generalizes and refines several existing results. Additionally, we derive an asymptotically sharp constant for a Riesz type theorem pertaining to a specific class of $K$-quasiregular mappings. Furthermore, we obtain Kolmogorov type and Zygmund type theorems for harmonic $(K,K')$-quasiregular mappings.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.