Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

AttnComp: Attention-Guided Adaptive Context Compression for Retrieval-Augmented Generation (2509.17486v1)

Published 22 Sep 2025 in cs.CL

Abstract: Retrieval-augmented generation improves the factual accuracy of LLMs by incorporating external context, but often suffers from irrelevant retrieved content that hinders effectiveness. Context compression addresses this issue by filtering out irrelevant information from context before LLM generation. However, existing methods struggle to adaptively adjust compression rates for different context, maintain low latency and integrate information across multiple documents. To overcome these limitations, We introduce AttnComp, an adaptive, efficient and context-aware compression framework. By leveraging the attention mechanism of LLMs to identify relevant information, AttnComp employs a Top-P compression algorithm to retain the minimal set of documents whose cumulative attention weights exceeds a predefined threshold. In addition to compression, AttnComp estimates response confidence by assessing the overall relevance of the retrieved content, enabling users to gauge response reliability. Experiments demonstrate that AttnComp outperforms existing compression methods and uncompressed baselines, achieving higher accuracy with substantial compression rates and lower latency.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.