AttnComp: Attention-Guided Adaptive Context Compression for Retrieval-Augmented Generation (2509.17486v1)
Abstract: Retrieval-augmented generation improves the factual accuracy of LLMs by incorporating external context, but often suffers from irrelevant retrieved content that hinders effectiveness. Context compression addresses this issue by filtering out irrelevant information from context before LLM generation. However, existing methods struggle to adaptively adjust compression rates for different context, maintain low latency and integrate information across multiple documents. To overcome these limitations, We introduce AttnComp, an adaptive, efficient and context-aware compression framework. By leveraging the attention mechanism of LLMs to identify relevant information, AttnComp employs a Top-P compression algorithm to retain the minimal set of documents whose cumulative attention weights exceeds a predefined threshold. In addition to compression, AttnComp estimates response confidence by assessing the overall relevance of the retrieved content, enabling users to gauge response reliability. Experiments demonstrate that AttnComp outperforms existing compression methods and uncompressed baselines, achieving higher accuracy with substantial compression rates and lower latency.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.