Papers
Topics
Authors
Recent
2000 character limit reached

SPICED: A Synaptic Homeostasis-Inspired Framework for Unsupervised Continual EEG Decoding (2509.17439v1)

Published 22 Sep 2025 in cs.AI and cs.LG

Abstract: Human brain achieves dynamic stability-plasticity balance through synaptic homeostasis. Inspired by this biological principle, we propose SPICED: a neuromorphic framework that integrates the synaptic homeostasis mechanism for unsupervised continual EEG decoding, particularly addressing practical scenarios where new individuals with inter-individual variability emerge continually. SPICED comprises a novel synaptic network that enables dynamic expansion during continual adaptation through three bio-inspired neural mechanisms: (1) critical memory reactivation; (2) synaptic consolidation and (3) synaptic renormalization. The interplay within synaptic homeostasis dynamically strengthens task-discriminative memory traces and weakens detrimental memories. By integrating these mechanisms with continual learning system, SPICED preferentially replays task-discriminative memory traces that exhibit strong associations with newly emerging individuals, thereby achieving robust adaptations. Meanwhile, SPICED effectively mitigates catastrophic forgetting by suppressing the replay prioritization of detrimental memories during long-term continual learning. Validated on three EEG datasets, SPICED show its effectiveness.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.