Papers
Topics
Authors
Recent
2000 character limit reached

Robust Mixture Models for Algorithmic Fairness Under Latent Heterogeneity (2509.17411v1)

Published 22 Sep 2025 in stat.ML and cs.LG

Abstract: Standard machine learning models optimized for average performance often fail on minority subgroups and lack robustness to distribution shifts. This challenge worsens when subgroups are latent and affected by complex interactions among continuous and discrete features. We introduce ROME (RObust Mixture Ensemble), a framework that learns latent group structure from data while optimizing for worst-group performance. ROME employs two approaches: an Expectation-Maximization algorithm for linear models and a neural Mixture-of-Experts for nonlinear settings. Through simulations and experiments on real-world datasets, we demonstrate that ROME significantly improves algorithmic fairness compared to standard methods while maintaining competitive average performance. Importantly, our method requires no predefined group labels, making it practical when sources of disparities are unknown or evolving.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: