Papers
Topics
Authors
Recent
2000 character limit reached

SilentStriker:Toward Stealthy Bit-Flip Attacks on Large Language Models (2509.17371v1)

Published 22 Sep 2025 in cs.CR and cs.LG

Abstract: The rapid adoption of LLMs in critical domains has spurred extensive research into their security issues. While input manipulation attacks (e.g., prompt injection) have been well studied, Bit-Flip Attacks (BFAs) -- which exploit hardware vulnerabilities to corrupt model parameters and cause severe performance degradation -- have received far less attention. Existing BFA methods suffer from key limitations: they fail to balance performance degradation and output naturalness, making them prone to discovery. In this paper, we introduce SilentStriker, the first stealthy bit-flip attack against LLMs that effectively degrades task performance while maintaining output naturalness. Our core contribution lies in addressing the challenge of designing effective loss functions for LLMs with variable output length and the vast output space. Unlike prior approaches that rely on output perplexity for attack loss formulation, which inevitably degrade output naturalness, we reformulate the attack objective by leveraging key output tokens as targets for suppression, enabling effective joint optimization of attack effectiveness and stealthiness. Additionally, we employ an iterative, progressive search strategy to maximize attack efficacy. Experiments show that SilentStriker significantly outperforms existing baselines, achieving successful attacks without compromising the naturalness of generated text.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 7 likes about this paper.