Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 109 tok/s
Gemini 3.0 Pro 52 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

CMOS Implementation of Field Programmable Spiking Neural Network for Hardware Reservoir Computing (2509.17355v1)

Published 22 Sep 2025 in cs.NE

Abstract: The increasing complexity and energy demands of large-scale neural networks, such as Deep Neural Networks (DNNs) and LLMs, challenge their practical deployment in edge applications due to high power consumption, area requirements, and privacy concerns. Spiking Neural Networks (SNNs), particularly in analog implementations, offer a promising low-power alternative but suffer from noise sensitivity and connectivity limitations. This work presents a novel CMOS-implemented field-programmable neural network architecture for hardware reservoir computing. We propose a Leaky Integrate-and-Fire (LIF) neuron circuit with integrated voltage-controlled oscillators (VCOs) and programmable weighted interconnections via an on-chip FPGA framework, enabling arbitrary reservoir configurations. The system demonstrates effective implementation of the FORCE algorithm learning, linear and non-linear memory capacity benchmarks, and NARMA10 tasks, both in simulation and actual chip measurements. The neuron design achieves compact area utilization (around 540 NAND2-equivalent units) and low energy consumption (21.7 pJ/pulse) without requiring ADCs for information readout, making it ideal for system-on-chip integration of reservoir computing. This architecture paves the way for scalable, energy-efficient neuromorphic systems capable of performing real-time learning and inference with high configurability and digital interfacing.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.