Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

VQEzy: An Open-Source Dataset for Parameter Initialize in Variational Quantum Eigensolvers (2509.17322v1)

Published 22 Sep 2025 in cs.LG, cs.ET, and quant-ph

Abstract: Variational Quantum Eigensolvers (VQEs) are a leading class of noisy intermediate-scale quantum (NISQ) algorithms, whose performance is highly sensitive to parameter initialization. Although recent machine learning-based initialization methods have achieved state-of-the-art performance, their progress has been limited by the lack of comprehensive datasets. Existing resources are typically restricted to a single domain, contain only a few hundred instances, and lack complete coverage of Hamiltonians, ansatz circuits, and optimization trajectories. To overcome these limitations, we introduce VQEzy, the first large-scale dataset for VQE parameter initialization. VQEzy spans three major domains and seven representative tasks, comprising 12,110 instances with full VQE specifications and complete optimization trajectories. The dataset is available online, and will be continuously refined and expanded to support future research in VQE optimization.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.