Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

On the Simplification of Neural Network Architectures for Predictive Process Monitoring (2509.17145v1)

Published 21 Sep 2025 in cs.LG

Abstract: Predictive Process Monitoring (PPM) aims to forecast the future behavior of ongoing process instances using historical event data, enabling proactive decision-making. While recent advances rely heavily on deep learning models such as LSTMs and Transformers, their high computational cost hinders practical adoption. Prior work has explored data reduction techniques and alternative feature encodings, but the effect of simplifying model architectures themselves remains underexplored. In this paper, we analyze how reducing model complexity, both in terms of parameter count and architectural depth, impacts predictive performance, using two established PPM approaches. Across five diverse event logs, we show that shrinking the Transformer model by 85% results in only a 2-3% drop in performance across various PPM tasks, while the LSTM proves slightly more sensitive, particularly for waiting time prediction. Overall, our findings suggest that substantial model simplification can preserve predictive accuracy, paving the way for more efficient and scalable PPM solutions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.