Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Ultra-short-term solar power forecasting by deep learning and data reconstruction (2509.17095v1)

Published 21 Sep 2025 in cs.LG and cs.AI

Abstract: The integration of solar power has been increasing as the green energy transition rolls out. The penetration of solar power challenges the grid stability and energy scheduling, due to its intermittent energy generation. Accurate and near real-time solar power prediction is of critical importance to tolerant and support the permeation of distributed and volatile solar power production in the energy system. In this paper, we propose a deep-learning based ultra-short-term solar power prediction with data reconstruction. We decompose the data for the prediction to facilitate extensive exploration of the spatial and temporal dependencies within the data. Particularly, we reconstruct the data into low- and high-frequency components, using ensemble empirical model decomposition with adaptive noise (CEEMDAN). We integrate meteorological data with those two components, and employ deep-learning models to capture long- and short-term dependencies towards the target prediction period. In this way, we excessively exploit the features in historical data in predicting a ultra-short-term solar power production. Furthermore, as ultra-short-term prediction is vulnerable to local optima, we modify the optimization in our deep-learning training by penalizing long prediction intervals. Numerical experiments with diverse settings demonstrate that, compared to baseline models, the proposed method achieves improved generalization in data reconstruction and higher prediction accuracy for ultra-short-term solar power production.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube