Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Intention-aware Hierarchical Diffusion Model for Long-term Trajectory Anomaly Detection (2509.17068v1)

Published 21 Sep 2025 in cs.AI

Abstract: Long-term trajectory anomaly detection is a challenging problem due to the diversity and complex spatiotemporal dependencies in trajectory data. Existing trajectory anomaly detection methods fail to simultaneously consider both the high-level intentions of agents as well as the low-level details of the agent's navigation when analysing an agent's trajectories. This limits their ability to capture the full diversity of normal trajectories. In this paper, we propose an unsupervised trajectory anomaly detection method named Intention-aware Hierarchical Diffusion model (IHiD), which detects anomalies through both high-level intent evaluation and low-level sub-trajectory analysis. Our approach leverages Inverse Q Learning as the high-level model to assess whether a selected subgoal aligns with an agent's intention based on predicted Q-values. Meanwhile, a diffusion model serves as the low-level model to generate sub-trajectories conditioned on subgoal information, with anomaly detection based on reconstruction error. By integrating both models, IHiD effectively utilises subgoal transition knowledge and is designed to capture the diverse distribution of normal trajectories. Our experiments show that the proposed method IHiD achieves up to 30.2% improvement in anomaly detection performance in terms of F1 score over state-of-the-art baselines.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.