Papers
Topics
Authors
Recent
2000 character limit reached

From Easy to Hard: The MIR Benchmark for Progressive Interleaved Multi-Image Reasoning (2509.17040v1)

Published 21 Sep 2025 in cs.CV and cs.AI

Abstract: Multi-image Interleaved Reasoning aims to improve Multi-modal LLMs (MLLMs) ability to jointly comprehend and reason across multiple images and their associated textual contexts, introducing unique challenges beyond single-image or non-interleaved multi-image tasks. While current multi-image benchmarks overlook interleaved textual contexts and neglect distinct relationships between individual images and their associated texts, enabling models to reason over multi-image interleaved data may significantly enhance their comprehension of complex scenes and better capture cross-modal correlations. To bridge this gap, we introduce a novel benchmark MIR, requiring joint reasoning over multiple images accompanied by interleaved textual contexts to accurately associate image regions with corresponding texts and logically connect information across images. To enhance MLLMs ability to comprehend multi-image interleaved data, we introduce reasoning steps for each instance within the benchmark and propose a stage-wise curriculum learning strategy. This strategy follows an "easy to hard" approach, progressively guiding models from simple to complex scenarios, thereby enhancing their ability to handle challenging tasks. Extensive experiments benchmarking multiple MLLMs demonstrate that our method significantly enhances models reasoning performance on MIR and other established benchmarks. We believe that MIR will encourage further research into multi-image interleaved reasoning, facilitating advancements in MLLMs capability to handle complex inter-modal tasks.Our code and dataset are available at https://github.com/Shelly-coder239/MIRBench.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.