Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Adaptive Overclocking: Dynamic Control of Thinking Path Length via Real-Time Reasoning Signals (2509.17000v1)

Published 21 Sep 2025 in cs.LG and cs.AI

Abstract: Large Reasoning Models (LRMs) often suffer from computational inefficiency due to overthinking, where a fixed reasoning budget fails to match the varying complexity of tasks. To address this issue, we propose Adaptive Overclocking, a method that makes the overclocking hyperparameter $\alpha$ dynamic and context-aware. Our method adjusts reasoning speed in real time through two complementary signals: (1) token-level model uncertainty for fine-grained step-wise control, and (2) input complexity estimation for informed initialization. We implement this approach with three strategies: Uncertainty-Aware Alpha Scheduling (UA-$\alpha$S), Complexity-Guided Alpha Initialization (CG-$\alpha$I), and a Hybrid Adaptive Control (HAC) that combines both. Experiments on GSM8K, MATH, and SVAMP show that HAC achieves superior accuracy-latency trade-offs, reducing unnecessary computation on simple problems while allocating more resources to challenging ones. By mitigating overthinking, Adaptive Overclocking enhances both efficiency and overall reasoning performance.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.