Papers
Topics
Authors
Recent
2000 character limit reached

Attentive AV-FusionNet: Audio-Visual Quality Prediction with Hybrid Attention (2509.16994v1)

Published 21 Sep 2025 in eess.AS, cs.MM, and eess.IV

Abstract: We introduce a novel deep learning-based audio-visual quality (AVQ) prediction model that leverages internal features from state-of-the-art unimodal predictors. Unlike prior approaches that rely on simple fusion strategies, our model employs a hybrid representation that combines learned Generative Machine Listener (GML) audio features with hand-crafted Video Multimethod Assessment Fusion (VMAF) video features. Attention mechanisms capture cross-modal interactions and intra-modal relationships, yielding context-aware quality representations. A modality relevance estimator quantifies each modality's contribution per content, potentially enabling adaptive bitrate allocation. Experiments demonstrate improved AVQ prediction accuracy and robustness across diverse content types.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.