NeuFACO: Neural Focused Ant Colony Optimization for Traveling Salesman Problem (2509.16938v1)
Abstract: This study presents Neural Focused Ant Colony Optimization (NeuFACO), a non-autoregressive framework for the Traveling Salesman Problem (TSP) that combines advanced reinforcement learning with enhanced Ant Colony Optimization (ACO). NeuFACO employs Proximal Policy Optimization (PPO) with entropy regularization to train a graph neural network for instance-specific heuristic guidance, which is integrated into an optimized ACO framework featuring candidate lists, restricted tour refinement, and scalable local search. By leveraging amortized inference alongside ACO stochastic exploration, NeuFACO efficiently produces high-quality solutions across diverse TSP instances.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.