Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Auditability and the Landscape of Distance to Multicalibration (2509.16930v1)

Published 21 Sep 2025 in cs.LG

Abstract: Calibration is a critical property for establishing the trustworthiness of predictors that provide uncertainty estimates. Multicalibration is a strengthening of calibration which requires that predictors be calibrated on a potentially overlapping collection of subsets of the domain. As multicalibration grows in popularity with practitioners, an essential question is: how do we measure how multicalibrated a predictor is? B{\l}asiok et al. (2023) considered this question for standard calibration by introducing the distance to calibration framework (dCE) to understand how calibration metrics relate to each other and the ground truth. Building on the dCE framework, we consider the auditability of the distance to multicalibration of a predictor $f$. We begin by considering two natural generalizations of dCE to multiple subgroups: worst group dCE (wdMC), and distance to multicalibration (dMC). We argue that there are two essential properties of any multicalibration error metric: 1) the metric should capture how much $f$ would need to be modified in order to be perfectly multicalibrated; and 2) the metric should be auditable in an information theoretic sense. We show that wdMC and dMC each fail to satisfy one of these two properties, and that similar barriers arise when considering the auditability of general distance to multigroup fairness notions. We then propose two (equivalent) multicalibration metrics which do satisfy these requirements: 1) a continuized variant of dMC; and 2) a distance to intersection multicalibration, which leans on intersectional fairness desiderata. Along the way, we shed light on the loss-landscape of distance to multicalibration and the geometry of the set of perfectly multicalibrated predictors. Our findings may have implications for the development of stronger multicalibration algorithms as well as multigroup auditing more generally.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.