Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

LVADNet3D: A Deep Autoencoder for Reconstructing 3D Intraventricular Flow from Sparse Hemodynamic Data (2509.16860v1)

Published 21 Sep 2025 in cs.LG

Abstract: Accurate assessment of intraventricular blood flow is essential for evaluating hemodynamic conditions in patients supported by Left Ventricular Assist Devices (LVADs). However, clinical imaging is either incompatible with LVADs or yields sparse, low-quality velocity data. While Computational Fluid Dynamics (CFD) simulations provide high-fidelity data, they are computationally intensive and impractical for routine clinical use. To address this, we propose LVADNet3D, a 3D convolutional autoencoder that reconstructs full-resolution intraventricular velocity fields from sparse velocity vector inputs. In contrast to a standard UNet3D model, LVADNet3D incorporates hybrid downsampling and a deeper encoder-decoder architecture with increased channel capacity to better capture spatial flow patterns. To train and evaluate the models, we generate a high-resolution synthetic dataset of intraventricular blood flow in LVAD-supported hearts using CFD simulations. We also investigate the effect of conditioning the models on anatomical and physiological priors. Across various input configurations, LVADNet3D outperforms the baseline UNet3D model, yielding lower reconstruction error and higher PSNR results.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.