Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Semantic-Driven Topic Modeling for Analyzing Creativity in Virtual Brainstorming (2509.16835v1)

Published 20 Sep 2025 in cs.CL and cs.AI

Abstract: Virtual brainstorming sessions have become a central component of collaborative problem solving, yet the large volume and uneven distribution of ideas often make it difficult to extract valuable insights efficiently. Manual coding of ideas is time-consuming and subjective, underscoring the need for automated approaches to support the evaluation of group creativity. In this study, we propose a semantic-driven topic modeling framework that integrates four modular components: transformer-based embeddings (Sentence-BERT), dimensionality reduction (UMAP), clustering (HDBSCAN), and topic extraction with refinement. The framework captures semantic similarity at the sentence level, enabling the discovery of coherent themes from brainstorming transcripts while filtering noise and identifying outliers. We evaluate our approach on structured Zoom brainstorming sessions involving student groups tasked with improving their university. Results demonstrate that our model achieves higher topic coherence compared to established methods such as LDA, ETM, and BERTopic, with an average coherence score of 0.687 (CV), outperforming baselines by a significant margin. Beyond improved performance, the model provides interpretable insights into the depth and diversity of topics explored, supporting both convergent and divergent dimensions of group creativity. This work highlights the potential of embedding-based topic modeling for analyzing collaborative ideation and contributes an efficient and scalable framework for studying creativity in synchronous virtual meetings.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.