Papers
Topics
Authors
Recent
2000 character limit reached

MMPart: Harnessing Multi-Modal Large Language Models for Part-Aware 3D Generation (2509.16768v1)

Published 20 Sep 2025 in cs.CV

Abstract: Generative 3D modeling has advanced rapidly, driven by applications in VR/AR, metaverse, and robotics. However, most methods represent the target object as a closed mesh devoid of any structural information, limiting editing, animation, and semantic understanding. Part-aware 3D generation addresses this problem by decomposing objects into meaningful components, but existing pipelines face challenges: in existing methods, the user has no control over which objects are separated and how model imagine the occluded parts in isolation phase. In this paper, we introduce MMPart, an innovative framework for generating part-aware 3D models from a single image. We first use a VLM to generate a set of prompts based on the input image and user descriptions. In the next step, a generative model generates isolated images of each object based on the initial image and the previous step's prompts as supervisor (which control the pose and guide model how imagine previously occluded areas). Each of those images then enters the multi-view generation stage, where a number of consistent images from different views are generated. Finally, a reconstruction model converts each of these multi-view images into a 3D model.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.